A FRAMEWORK FOR REFURBISHMENT OF HEALTHCARE FACILITIES

Presented at

HaCIRIC 2010 International Conference, Edinburgh, UK.

Date: 22-24 September 2010

Author: Mr. Amey Sheth
email: A.Sheth@lboro.ac.uk

Co-authors: Professor A. D. F. Price and Dr. J. Glass

Department of Civil & Building Engineering
Loughborough University
Leicestershire
England
LE11 3TU. UK

HaCIRIC
Health and Care Infrastructure Research and Innovation Centre

UNIVERSITIES OF SALFORD and READING, IMPERIAL COLLEGE
TABLE OF CONTENTS

- **INTRODUCTION**
- **RESEARCH METHODS**
- **DATA COLLECTION**
 - Drivers
 - Challenges
 - Aim, objectives, goals
- **DISCUSSION OF INVESTIGATION**
- **CONCEPTUAL FRAMEWORK**
 - Description
- **CONCLUSION**
- **FURTHER READING**
- **SITE VISIT PHOTOGRAPHS**
INTRODUCTION

- Explores facilities built in the **late 20th century** onwards with a **key focus** being the energy consumption of these facilities
- Increasing use of **BIM** and **simulation** tools for **speedy** and **improved delivery** of construction projects
- Importance to new construction and consideration to initial cost during refurbishment

REFURBISHMENT

- Whole life-cycle cost
- Quality of the refurbishment project
- Economic efficiency
- Performance
- Environmental impact (sustainability)

Building Information Modelling
RESEARCH METHODS

- Aim to **integrate/interface** existing tools
- Literature review + a questionnaire **survey**, face-to-face **interviews** and site **visits** to various hospitals
- A **protocol** was developed with three key sections
- **Pilot study** followed by questionnaire survey
- 43 questionnaire responses and 11 face-to-face interviews
CONSIDERATION DURING REFURBISHMENT (Continue..)

- Communication
- BIM should not be dominating
- Consideration to location of patients’ rooms and users
- Inform (provide detail) users about construction
- No phasing plan is perfect and be ready for challenges
- Be prepared for unforeseen problems
- No scope of work is perfect

<table>
<thead>
<tr>
<th>For refurbishment</th>
<th>For existing buildings and users</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication between the design team, hospital staff, patients, and users is important</td>
<td>User is aware of at least the next 10 construction moves/activities.</td>
</tr>
<tr>
<td>2. The use of BIM is suggested but should not be dominating.</td>
<td>It is difficult to locate mechanical services and utilities; be ready for surprises.</td>
</tr>
<tr>
<td>3. Any planned construction activity away from and with consideration to patients’ rooms will help the smooth running of a project.</td>
<td>There might be harmful fumes, gases released (e.g., at roof level) from existing building in use, which can affect ongoing work.</td>
</tr>
<tr>
<td>4. Provide details about where the construction team will be working.</td>
<td>Conduct a pre-investigation before starting any works.</td>
</tr>
<tr>
<td>5. No phasing plan is perfect, and there might be challenges to execute planned activities.</td>
<td>Be prepared to have back-up equipment to support running of mechanical plant.</td>
</tr>
<tr>
<td>6. Because of obstruction to existing users, be prepared to accept some unforeseen problems.</td>
<td>In some cases there may be a need to work with minimum available clear height, space, or time.</td>
</tr>
<tr>
<td>7. No scope of work for refurbishment is perfect.</td>
<td>Always carry out an investigation on completion of work, irrespective of scale of work.</td>
</tr>
</tbody>
</table>
CONSIDERATION TO EXISTING BUILDINGS AND USERS

- Difficult to locate mechanical services
- Release of harmful fumes/gases
- Constraints due to existing buildings (e.g. Height, space, time)
- Investigation before any work
- Back-up equipments to support operational parts of the facilities
- Investigation after any work

Table 1: Points to be considered in regard to existing building and users

<table>
<thead>
<tr>
<th>For refurbishment</th>
<th>For existing buildings and users</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication between the design team, hospital staff, patients, and users is important.</td>
<td>1. User is aware of at least the next 10 construction moves/activities.</td>
</tr>
<tr>
<td>2. The use of BIM is suggested but should not be dominating.</td>
<td>2. It is difficult to locate mechanical services and utilities; be ready for surprises.</td>
</tr>
<tr>
<td>3. Any planned construction activity away from and with consideration to patients’ rooms will help the smooth running of a project.</td>
<td>3. There might be harmful fumes, gases released (e.g. at roof level) from existing building in use, which can affect ongoing work.</td>
</tr>
<tr>
<td>4. Provide details about where the construction team will be working.</td>
<td>4. Conduct a pre-investigation before starting any works.</td>
</tr>
<tr>
<td>5. No phasing plan is perfect, and there might be challenges to execute planned activities.</td>
<td>5. Be prepared to have back-up equipment to support running of mechanical plant.</td>
</tr>
<tr>
<td>6. Because of obstruction to existing users, be prepared to accept some unforeseen problems.</td>
<td>6. In some cases there may be a need to work with minimum available clear height, space, or time.</td>
</tr>
<tr>
<td>7. No scope of work for refurbishment is perfect.</td>
<td>7. Always carry out an investigation on completion of work, irrespective of scale of work.</td>
</tr>
</tbody>
</table>
AIM, OBJECTIVES, GOALS

- Objectives related to design
- Objectives related construction

- Goals for existing buildings
 - Sustainability
 - Corporate commitment
 - Well planned programme

PHASE-I-IV, MEASURES and SUMMARY

Table 2: Phase I - ‘Proposal’ during refurbishment of healthcare facility

<table>
<thead>
<tr>
<th>Measures</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compliance with progressively tightening building regulations</td>
<td></td>
</tr>
<tr>
<td>2. Provision of Energy Performance certificate (EPC)</td>
<td></td>
</tr>
<tr>
<td>3. Better comfort, satisfaction, and productivity</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Phase II - ‘Design’ during refurbishment of healthcare facility

<table>
<thead>
<tr>
<th>Measures</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Passive measures (day-lighting to reduce need for artificial light)</td>
<td>1. Keep the low carbon theme up front</td>
</tr>
<tr>
<td>2. Upgrading of building fabric (insulation, windows) to improve ‘Construction’ and ‘Use’</td>
<td>2. Develop an integrated low carbon design and whole life costing</td>
</tr>
</tbody>
</table>

Table 4: Phase III and IV summary- ‘Construction’ and ‘Use’

<table>
<thead>
<tr>
<th>Phase III Construction</th>
<th>Phase IV Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Selection of appropriate contractor and subcontractor</td>
<td>1. To make sure operator and occupants understand the building</td>
</tr>
<tr>
<td>2. Ensure effective project management</td>
<td>2. To conduct post-occupancy evaluation</td>
</tr>
<tr>
<td>3. Get buy-in from site works</td>
<td>3. To make changes depending on energy use and comfort conditions</td>
</tr>
<tr>
<td>4. Monitor site progress against objectives</td>
<td>4. Make the most of the low carbon building</td>
</tr>
<tr>
<td>5. Energy monitoring</td>
<td>5. Meet building regulations</td>
</tr>
<tr>
<td>6. Satisfaction of aim, objectives, and goals</td>
<td>6. Improved energy performance after refurbishment</td>
</tr>
</tbody>
</table>

- Proposal
- Design
- Construction
- Use
DISCUSSION OF INVESTIGATION

INPUTS

- Do nothing
- Refurbished
- New facility

Consideration to infection control
Detailed survey
Preserve existing character
Quality of indoor environment
Occupancy evolution

KEY STAGES

DEVELOP BUSINESS CASE
COMPARE POSSIBLE SOLUTION
MASTER PLANNING & PHASING
OVERALL ASSESSMENT
PROJECT PLAN
BIM MODEL
ENERGY MODELLING & SIMULATION

OUTPUTS

Possible solution
Quality of indoor & outdoor environment
Scope of work, advance planning
Facility performance
Estimated project cost
Energy usage
PROPOSED CONCEPTUAL FRAMEWORK

Pre-refurbishment Phases:
1. Business case
2. Define aim, objectives, goals
3. Master planning
4. Targets

Post-refurbishment Phases:
1. Detailed survey
2. Options for energy & carbon reduction
3. Monitor progress
4. Inform users

Construction Phases:
1. Maximum recycle
2. Safe disposal of waste
3. Notes for facility managers, etc.
4. Satisfy regulations

Tools/process:

Purpose:
- Think
- Propose
- Develop
- Integrate
- Implement
- Verify
- Validate

Support system:
- A. Pre-project survey
- B. Lessons from other projects
- C. Healing environment
- D. Evidence based design

Support:
- A. Modelling
- B. Energy targets
- C. Carbon targets
- D. Comparative studies

Pre & post Refurbishment evaluation and feedback to design team, etc:
- A. Modelling
- B. Energy targets
- C. Carbon targets
- D. Comparative studies

A. Simulation
B. Solar studies
C. Visualisation
D. Testing & validation

A. User feedback
B. Project learning
C. Virtual model for future
D. Project evaluation

A. Pre-project survey
B. Lessons from other projects
C. Healing environment
D. Evidence based design

A. Modelling
B. Energy targets
C. Carbon targets
D. Comparative studies

A. Simulation
B. Solar studies
C. Visualisation
D. Testing & validation

A. User feedback
B. Project learning
C. Virtual model for future
D. Project evaluation

A. Pre-project survey
B. Lessons from other projects
C. Healing environment
D. Evidence based design

A. Modelling
B. Energy targets
C. Carbon targets
D. Comparative studies

A. Simulation
B. Solar studies
C. Visualisation
D. Testing & validation

A. User feedback
B. Project learning
C. Virtual model for future
D. Project evaluation

A. Pre-project survey
B. Lessons from other projects
C. Healing environment
D. Evidence based design

A. Modelling
B. Energy targets
C. Carbon targets
D. Comparative studies

A. Simulation
B. Solar studies
C. Visualisation
D. Testing & validation

A. User feedback
B. Project learning
C. Virtual model for future
D. Project evaluation
DISCUSSION & CONCLUSION

- Refurbishment is **neglected** area

- **Age** is important factor but refurbishment cannot be predicted only on the basis of age

- Limited or no consideration to **re-designing** and **re-planning** resulting in no significant improvement in building performance, post-refurbishment

- **Lack of frameworks** to implement BIM with refurbishment projects

- Possible to achieve significant energy saving with **sophisticated planning** & **mechanical system**

- Integration of **BIM** and **simulation** during refurbishment

- Energy saving should be achieved without comprising patient comfort.

- Framework is for designers, facility managers, client
FURTHER READING

THE ROYAL VICTORIA HOSPITAL, BELFAST, N. IRELAND

Recently completed refurbishment

Ongoing refurbishment + extension project
THANK YOU

Author: Mr. Amey Sheth

email: A.Sheth@lboro.ac.uk

www.haciric.org www.lboro.ac.uk